

Schools Coachings Colleges

•	
I D COO A III	

PRINCE OLYMPIAD EXAMINATION

	रिनर्देश बि	Instructions regarding filling of OMR Sheet are mentioned on the OMR Sheet only. The duration of the exam is 2 Hours. The Question Booklet consists of 100 Questions, each with 4 Marks. The maximum Marks are 400. Subject-wise division of 100 Questions are as follows: Maths-35, Science-35, S.St10, English-10, MAT-10. Candidates will be awarded 4 Marks for the indicated correct response to each question. One mark will be deducted for the incorrect response to each question. Space for rough work is also provided in the Question Booklet.		 ओ.एम.आर. र्श परीक्षा अवधि 2 इस परीक्षा पुरि का है । अधिकत कुल १०० प्रश्न विज्ञान-३५, स योग्यता परीक्षा प्रत्येक प्रश्न क गलत उत्तर दश है । 	ोट सम्बन्धित निर्देश ओ.एम.आर. शीट पर लिखे हैं। १ घण्टे हैं। तका में 100 प्रश्न है तथा प्रत्यकेक प्रश्न 4 अंकों तम अंक 400 हैं। ां का विषयवार विवरण इस प्रकार है : गणित-35, ामाजिक अध्ययन-10, अंग्रेजी-10 और मानसिक ज-10 प्रश्न । न सही उत्तर दर्शाने पर 4 अंक प्रदान किये जायेंगे । न सही उत्तर दर्शाने पर 4 अंक प्रदान किये जायेंगे । ां में एफ कार्य के लिए भी अलग से जगह दी गयी
		PH\	SICS		
01.	The resistance of 1A at into 10A ammeter, the s (1) 0.18 Ω (3) 0.002 Ω	nmeter is 0.018 Ω . To convert it shunt resistance required will be: (2) 0.0018 Ω (4) 0.12 Ω	01. 1A t परिव (1) ((3) (ऐमीटर का प्रतिरो र्तित करने के लिप 0.18 Ω 0.002 Ω	ध 0.018 Ω है। इसे 10A ऐमीटर में ए, आवश्यक शंट प्रतिरोध कितना होगा? (2) 0.0018Ω (4) 0.12 Ω
02.	Two equal negative cha	rge -q is fixed at the fixed points	02. दो स	मान ऋणावेश –q	, y-अक्ष पर निश्चित बिन्दुओं (0,a) और

(0,a) and (0, -a) on y-axis. A positive charge Q is released from rest at the point (2a, 0) on the x-axis. The charge Q will:

- (1) Execute SHM about the origin
- (2) move to origin and remain at rest
- (3) Move to infinity
- (4) Execute oscillatory but not SHM

- दो समान ऋणावेश –q, y–अक्ष पर निश्चित बिन्दुओं (0,a) और (0, –a) पर स्थिर किए गए है। एक धनात्मक आवेश Q, x–अक्ष पर बिन्दु (2a, 0) पर विरामावस्था से मुक्त किया गया है। आवेश Q होगा –
 - (1) केन्द्र के परित: सरल आवर्त गति करेगा
 - (2) केन्द्र की ओर गति करेगा और विरामावस्था पर ही रहेगा
 - (3) अनंत की ओर जाएगा
 - (4) दोलन करेगा परन्तु सरल आवर्त गति नहीं

Space for Rough Work

PRINCE OLYMPIAD EXAMINATION

03. A neutral conducting spherical shell is kept near a charge q as shown. The potential at point P due to the induced charges:

- 04. Maximum charge stored on a metal sphere of radius 15 \mid 04. cm may be 7.5 μ C. The potential energy of the sphere \mid in this case is:
 - (1) 9.67 J (2) 0.25 J
 - (3) 3.25 J (4) 1.69 J
- **05.** The magnetic field due to a straight conductor of uniform | **05.** cross–section of radius a and carring a steady current | is represented by:

03. एक उदासीन चालक गोलीय कोश को आवेश q के समीप दर्शाये गये अनुसार रखा जाता है। प्रेरित आवेश के कारण बिन्दु P पर विभव ज्ञात कीजिए-

PCP

 15 cm त्रिज्या के धातु गोलक पर संग्रहित अधिकतम आवेश 7.5
 μC हो सकता है। इस स्थिति में गोलक की स्थितिज ऊर्जा कितनी है-

- (3) 3.25 J (4) 1.69 J
- a त्रिज्या के एकसमान अनुप्रस्थ काट और अपरिवर्ती धारा के सीध े चालक के कारण चुम्बकीय क्षेत्र को किसके द्वारा दर्शाया जाता है-

Space for Rough Work

PRINCE OLYMPIAD EXAMINATION

06. A candidate connects a moving coil voltmeter v,a moving coil ammeter A, and a resistor R as shown in fig. If the voltmeter reads 20 V and the ammeter reads 4A, R is:

- (1) equal to 5Ω
 (3) less than 5 Ω
- (2) greater than 5 Ω
 (4) greater or less than 5 Ω
- **07.** Two straight horizontal parallel wires are carring the **107.** same current in same direction, d is the distance between the wires. You are provided with a small freely suspended magnetic needle. At which of the following positions will the orientation of the needle be independent of magnitude of the current in the wires:

(1) At a distance d/2 from any of the wires in any plane(2) At a distance d/2 from any of the wires in horizontal plane

(3) any where

(4) At points halfway between the wires in horizontal plane

06. कोई उम्मीदवार एक चल कुण्डली वोल्टमीटर v, चल कुण्डली धारामापी A और एक प्रतिरोधक R को आरेख में दर्शाये गए अनुसार जोड़ता है। यदि वोल्टमीटर का पाठ्यांक 20V है और ऐमीटर का पाठ्यांक 4A है, तब R का मान ज्ञात कीजए

🧐 PCP

5Ω के बराबर

(3) 5 Ω से कम

(2) 5 Ω से अधिक
 (4) 5 Ω से अधिक या कम

दो सीधे क्षैतिज समान्तर तार समान दिशा में समान धारा वहन करते है, इनके बीच की दूरी d है। आपकों सूक्ष्म मुक्त रूप से निलंबिल चुम्बकीय सुई प्रदान की गई है। निम्न में से किस स्थिति में सुई का अभिविन्यास तारों की विद्युत धारा के परिमाण से स्वतंत्र होगा

(1) किसी भी तल में किसी भी तार से d/2 दूरी पर
(2) क्षैतिज तल में किसी भी तार से d/2 दूरी पर

(3) कही भी(4) क्षैतिज तल में तारों के बीच मध्य बिन्दु पर

Space for Rough Work

PRINCE OLYMPIAD EXAMINATION

08. PQRS is a square loop made of uniform conducting wire the current enters the loop at P and leaves at S. The magnetic field will be

- (1) Maximum at centre of the loop
- (2) zero at the centre of loop
- (3) zero at all the points inside loop
- (4) zero at all the points outside the loop
- **09.** Two small bar magnets are placed in a plane. The | direction of their dipole moments and the position of | magnets are as shown in figure:

The appropriate direction of the net magnetic field at point P :

(2)

08. PQRS एकसमान चालक तार से निर्मित एक वर्गाकार लूप है, ध ारा लूप में p से प्रवेश करती हे और s से निकलती है। तब चुम्बकीय क्षेत्र होगा

- (1) लूप के केन्द्र पर अधिकतम
- (2) लूप के केन्द्र पर शून्य
- (3) लूप के अन्दर सभी बिन्दुओं पर शून्य
- (4) लूप के बाहर सभी बिन्दुओं पर शून्य
- 09. एक समतल में दो छोटे दण्ड चुम्बक रखे गए है। उनके द्विध्रवीय आघूर्णों की दिशा और चुम्बक की स्थिति को चित्र में दर्शाया गया है।

बिन्दु P पर कुल चुम्बकीय क्षेत्र की उपयुक्त दिशा :

Space for Rough Work

PRINCE OLYMPIAD EXAMINATION

q3

PCP

Three charges $-q_1$, $+q_2$ and $-q_3$ are placed as shown in $\begin{vmatrix} 10 \\ 0 \end{vmatrix}$ तीन आवेश $-q_1$, $+q_2$ और $-q_3$ चित्र में दर्शाये अनुसरा रखे गए है। 10. figure. The x-component of the force on $-q_1$ is proportional to:

- (3) $\frac{q_2}{b^2} + \frac{q_3}{a^2} \sin \theta$ (4) $\frac{q_2}{b^2} + \frac{q_3}{a^2} \cos \theta$ The mean free path of electrons in a metal is
- 4×10^{-8} m. The electric field which can give on an average 2eV energy to an electron in the metal will be in a unit of V m⁻¹
 - (1) 8×10^7 (2) 5×10^{-11} (3) 8×10^{-11} (4) 5×10^7

11.

- The resistivity of iron is $1 \times 10^{-7} \Omega m$. The resistance of | 12. 12. iron wire of particular length and thickness is 1Ω . If the length and diameter of wire both are doubled, then the resistivity in Ωm will be:

(1) 1×10^{-7}	(2) 2×10^{-7}
(3) 4×10 ⁻⁷	(4) 8×10 ⁻⁷

The positive temperature coefficient of resistance is | 13. 13. for: (1) carbon (2) germanium

(4) electrolyte

+q, (1) $\frac{q_2}{b^2} - \frac{q_3}{a^2} \sin \theta$ (2) $\frac{q_2}{b^2} - \frac{q_3}{a^2} \cos \theta$

-q1 पर बल का x-घटक किसके अनुक्रमानुपाती है?

- (3) $\frac{q_2}{b^2} + \frac{q_3}{a^2} \sin \theta$ (4) $\frac{q_2}{b^2} + \frac{q_3}{a^2} \cos \theta$
- किसी धातु में इलेक्ट्रॉनों का माध्य मुक्त पथ $4 imes 10^{-8} \,\mathrm{m}$ है। 11. विद्युत क्षेत्र जो धातु में एक इलेक्ट्रॉन को औसत 2eV ऊर्जा दे सकता है, V m-1 इकाई में कितना होगा?
 - (1) 8×10^7 (2) 5×10^{-11} (3) 8×10⁻¹¹ (4) 5×10^7
 - लोहे की प्रतिरोधकता $1{ imes}10^{-7}\,\Omega{
 m m}\,$ है। विशिष्ट लंबाई और मोटाई के लोहे के तार का प्रतिरोध 1Ω हैं यदि तार की लंबाई और व्यास दोनो को दोगुना किया जाता है, तो Ωm में प्रतिरोधकता होगी-

(1)
$$1 \times 10^{-7}$$
 (2) 2×10^{-7}
(3) 4×10^{-7} (4) 8×10^{-7}

- प्रतिरोध का धनात्मक ताप गुणांक किसके लिए होता है-
 - (2) जर्मेनियम (1) कार्बन (4) वैद्युत अपघट्य (3) तांबा

Space for Rough Work

(3) copper

Incoodu		
	11.1.4	40111

PRINCE OLYMPIAD EXAMINATION

14.	There are 'n' similar co	nductors each of resistance 'R'.	14.	14. प्रत्येक 'R' प्रतिरोध के 'n' समान चालक है। समान्तर		
	The resultant resistant	ice comes out to be 'X' when		जोड़ने पर परिणामी प्रतिरोध 'X' प्राप्त होता है। यदि वे श्रेणीइ जुडे़ हुए है तब कितना प्रतिरोध प्राप्त होता है?		
	connected in parallel.	If they are connected in series,				
	the resistance comes or	ut to be :	ĺ			
	(1) x/n^2	(2) $n^2 x$		(1) x/n ²	(2) $n^2 x$	
	(3) x/n	(4) nx		(3) x/n	(4) nx	
15.	A diamagnetic substand	ce is kept in a uniform external	15.	प्रति–चुंबकीय पदार्थ व	को एक समान बाह्य चुम्बकीय क्षेत्र B में रर	
	magnetic field B. If th	e net magnetic field inside the		जाता है। यदि पदार्थ	के अन्दर कुल चुम्ब	कीय क्षेत्र B' है, तब
	substance is B' then:					
	(1) $B' < B$	(2) $B' = B$		(1) $B' < B$	(2) $B' = B$	
	(3) $B' > B$	(4) any of above		(3) $B' > B$	(4) उपरोक्त	में से कोई
16.	A magnet of magnetic	moment M is situated with its	16.	M चुम्बकीय आघूर्ण र	का चुम्बक इस प्रका	र स्थित है- कि इसका
	axis along the direction	n of a magnetic field of strength	İ	अक्ष B सामर्थ्य के चु	ुम्बकीय क्षेत्र की दि <u>श</u>	गा के अनुदिश है। इसे
	B. The work done in rot	tating it by an angle of 180° will		180° के कोण से घुग	वुमाने में किया गया कार्य कितना होगा?	
	be:					
	(1) –MB	(2) +MB		(1) –MB	(2) +MB	
	(3) 0	(4) +2MB		(3) 0	(4) +2MB	
17.	The equivalent resista	ance of the following in finite	17.	प्रतिरोधो के निम्नलि	खेत अनन्त संयोजन	का समतुल्य प्रतिरोध
	network of resistances	is:		कितना है-		
	2Ω	2Ω 2Ω		2Ω	2Ω	2Ω
			İ			
	₹ ₂₀ ₹	$\Omega \qquad {\stackrel{1}{\gtrless}}_{2\Omega}$	ļ)	\$ 20		ΩΩ
	ş ş	<pre></pre>	ľ	<	Γ Γ	
	L		1	L		
	(1) loss than 40	232 232	l	(1) 40 में <u>ज</u> म	232	232
	(1) less that 452 $(2) 40$			 (1) 452 स कम (2) 4O 		
	(2) 452 (3) more then (10) but 1/	ass than 120		(2) 452 (3) 40 में अधिक '	लेकिन 120 में का	
	(3) more than 452000 for	css than 1252	1	(3) 452 d जावक (4) 120	लाकन 1252 सं कन	
	(4) 1232			(4) 1232		
			ļ			
			1			
			<u> </u>			

Space for Rough Work

PRINCE OLYMPIAD EXAMINATION

18. If a resistance R_2 is connected in parallel with resistance R in the circuit shown, then possible value of current through R and the possible value of R_2 will be:

- (1) I/3,R (2) I,2R (3) I/4,R (4) I/2,R
- 19. As the switch s is closed in the circuit shown in the | 19. figure, the current passed through it is:

18. यदि दर्शाए गए परिपथ में, प्रतिरोध R₂ प्रतिरोध R के साथ समान्तर क्रम में जुड़ा है तब R से गुजरने वाली धारा का संभावित मान और R₂ का संभावित मान कितना होगा

(1) I/3,R (2) I,2R(3) I/4,R (4) I/2,R

Space for Rough Work

PRINCE OLYMPIAD EXAMINATION

- 21. An electron, a proton, a deutron and an α -particle, each having the same speed are in a region of constant magnetic field perpendicular to the direction of the velocities of the particles. The radius of the circular orbits of these particles are respectively. R_e , R_p , R_d and R_q . It follows that:
 - (1) $R_e = R_p$ (2) $R_p = R_d$
 - (3) $R_d = R_\alpha$ (4) $R_p = R_\alpha$
- 22. Two pith balls carring equal charges are suspended from a common point by strings of equal length, the equilibrium separation between them is 'r'. Now the strings are rigidly clamped at half the height. The equilibrium separation between the balls now become:

23. An electric dipole is in unstable equilibrium in uniform 23. electric field. The angle between its dipole moment and electric field is:

 $(2) 120^{\circ}$

 $(4) 180^{\circ}$

- (1) 90°
- (3) 0°

 समान वेग का एक इलेक्ट्रॉन, एक प्रोटॉन, एक ड्यूटेरोन और एक α-कण, कणों के वेग की दिशा से लम्बवत् नियत चुम्बकीय क्षेत्र में स्थित है इन कणों की वृत्तीय कक्षाओं की त्रिज्याएँ क्रमश: R_e, R_a, R_d तथा R_a है। यह इस प्रकार है कि :

(1)
$$R_e = R_p$$
 (2) $R_p = R_d$
(2) $R_p = R_d$

(3) $\mathbf{R}_{d} = \mathbf{R}_{\alpha}$ (4) $\mathbf{R}_{p} = \mathbf{R}_{\alpha}$. समान आवेश की दो गेंदे बराबर लम्बाई के तारों द्वारा एक ही बिन्दु की सहायता से निलंबित की गई है, इनके मध्य संतुलन पृथक्करण 'r' है। अब डोरी की दृढ़तापूर्वक आधी ऊचाई पर बांध दिया गया है। अब गेंदों के बीच संतुलन पृथक्करण कितना है-

एक वैद्युत द्विध्रुण एकसमान विद्युत क्षेत्र में अस्थायी संतुलन में है।
 इसके द्विध्रुव आघूर्ण और विद्युत क्षेत्र के बीच का कोण है-

(1) 90°	(2) 120°
(3) 0°	(4) 180°

Space for Rough Work

www.princeeduhub.com **PRINCE OLYMPIAD EXAMINATION** 😰 PCP दिए गए चित्र में बिन्दु P और Q के बीच धारा और विभवांतर 24. In given ciruit diagram, what will be current and potential 24. कितना होगाdifference between P and Q 9Ω 9Ω (1) 1/3 A और 3V (2) 1/6 A और 4V (1) 1/3 A and 3V (2) 1/6 A and 4V (3) 1/9 A और 9V (4) 1/2 A और 12V (3) 1/9 A and 9V (4) 1/2 A and 12V यदि विद्युत बल्ब में धारा 0.5% से घटा दी जाती है, तो बल्ब में 25. **25.** If the current in an electric bulb decreased by 0.5% the शक्ति लगभग कितनी घट जाएगी? power in the bulb decreased by approximate by (1) 1%(2) 2%(1) 1%(2) 2%(3) 0.5%(4) 0.25%(3) 0.5% (4) 0.25% 99Ω , के चल कुण्डली धारामापी के माध्यम से मुख्य धारा का 26. In order to pass 10% of main current through a moving **26**. 10% प्रवाहित करने के लिए शंट का आवश्यक प्रतिरोध ज्ञात coil galvonometer of 99Ω , the resistance of required कीजिएshunt is: (1) 9.9Ω (2) 10Ω (1) 9.9Ω (2) 10Ω (3) 11Ω (4) 9Ω (4) 9Ω (3) 11Ω एक आवेश q को बेलनाकार पात्र के खुले छोर के केन्द्र में रखा 27. A charge q is placed at the centre of the open end of 27. गया है पात्र की सतह के माध्यम से विद्युत क्षेत्र का प्रवाह हैthe cylinderical vessel. The flux of the electric field through the surface of the versel: (1) zero (2) q/ϵ_0 (1) zero (2) q/ϵ_0 (3) $q/2\varepsilon_0$ (4) $2q/\varepsilon_0$ (3) $q/2\varepsilon_0$ (4) $2q/\varepsilon_0$

Space for Rough Work

28.

29.

The dimension of magnetic field B is:

(2) $MT^{-2}A^{-1}$

A particle at mass m, charge Q, and kinetic energy T

enter a transverse uniform magnetic field of induction

 $\frac{1}{B}$. After 3 sec the kinetic energy of particle will be:

(2) 2T

(4) 4T

(4) $M^2LT^{-2}A^{-1}$

28.

29.

(1) $MLT^{-2}A^{-1}$

(3) $ML^{2}TA^{-2}$

(1) 3T

(3) T

चुम्बकीय क्षेत्र B की विमा ज्ञात कीजिए-

(2) $MT^{-2}A^{-1}$

m द्रव्यमान Q, आवेश और T गतिज ऊर्जा का एक कण B.

प्रेरक के अनुप्रस्थ एक समान चुम्बकीय क्षेत्र में प्रवेश करता है। 3

(2) 2T

(4) 4T

sec के बाद कण की गतिज ऊर्जा कितनी होगी?

(4) $M^2LT^{-2}A^{-1}$

(1) $MLT^{-2}A^{-1}$

(3) $ML^{2}TA^{-2}$

(1) 3T

(3) T

PRINCE OLYMPIAD EXAMINATION

- **30.** The relation between voltage sensitivity (σ_v) and current sensitivity (σ_i) of a moving coil galvanometer is (resistance of galvanometer is G)
 - (1) $\frac{\sigma_{i}}{G} = \sigma_{v}$ (2) $\frac{\sigma_{v}}{G} = \sigma_{i}$ (3) $\frac{G}{\sigma_{v}} = \sigma_{i}$ (4) $\frac{G}{\sigma_{i}} = \sigma_{v}$

 एक चल कुण्डली धारामापी की बोल्टेज सुग्राहिता (σ_ν) और धारा सुग्राहिता (σ_i) के बीच संबंध है। (धारामापी का प्रतिरोध = G)

(1)
$$\frac{\sigma_i}{G} = \sigma_v$$
 (2) $\frac{\sigma_v}{G} = \sigma_i$
(3) $\frac{G}{\sigma_v} = \sigma_i$ (4) $\frac{G}{\sigma_i} = \sigma_v$

Space for Rough Work

w	ww.princeeduhub	.com PRINCE OL	.YMP	PIAD EXAMINATIO	
		CHEM	IST	FRY	
31.	Consider the cell reactive the standard reduction Cu are -2.37 V and cell is: (1) -2.71 V (3) -2.03 V	tion Mg + Cu ²⁺ \rightarrow Cu + Mg ²⁺ .If potentials of Mg ²⁺ /Mg and Cu ²⁺ / +0.34 V respectively, E° for the (2) +2.71V (4) +2.03 V	31. 	निम्न सैल अभिक्रिया के Mg ²⁺ /Mg तथा Cu ²⁺ /C 2.37 V तथा +0.34 V (1) -2.71V (3) -2.03 V	लिए Mg + Cu ²⁺ → Cu + Mg ²⁺ .यदि cu के मानक अपचयन विभव क्रमश: – है तो सैल का E° है (2) +2.71V (4) +2.03 V
32.33.	Fe ³⁺ + e ⁻ → Fe ²⁺ , E Al ³⁺ + 3e ⁻ → Al, E ^o Br ₂ + 2e ⁻ → 2Br ⁻ , F Considering the above represents the correct (1) Br ⁻ < Fe ²⁺ < Al (3) Al < Br ⁻ < Fe ²⁺ The conductivity of S cm ⁻¹ . the resistance	$^{\circ} = 0.77 V$ = -1.66V $E^{\circ} = +1.08V$ data, state which of the following order of reducing power : (2) Fe ²⁺ < Al < Br ⁻ (4) Al < Fe ²⁺ < Br ⁻ a N/10 KCl at 25°C is 0.0112 of a cell containing the solution	32. 	Fe ³⁺ + e ⁻ → Fe ²⁺ , F Al ³⁺ + 3e ⁻ → Al, E ⁴ Br ₂ + 2e ⁻ → 2Br ⁻ , उपरोक्त आंकड़ों के आ क्षमता का सही क्रम है- (1) Br ⁻ < Fe ²⁺ < Al (3) Al < Br ⁻ < Fe ²⁺ 25°C पर N/10 KCl वि समान ताप पर एक सैल उ	$E^{\circ} = 0.77V$ $e^{\circ} = -1.66V$ $E^{\circ} = +1.08V$ $e^{\circ} = +1.$
34. 35.	at the same temp was constant will be: (1) 6.16 cm^{-1} (3) 0.0616 cm^{-1} A solution of Na ₂ SO ₄ is electrodes. The product respectively. (1) O ₂ ,H ₂ (3) H ₂ ,O ₂ Passage of 10800 C of deposited 2.977 g of m mol ⁻¹ . The charge on	s found to be 55 ohm. The cell (2) 0.616 cm^{-1} (4) 616 cm^{-1} in water is electrolysed using inert at the cathode and anode are (2) O_2, SO_2 (4) O_2, Na relectricity through the electrolyte netal with atomic mass of 106.4 g the metal ion is: (2) +2	 	ओम पाया जाता है तो सै (1) 6.16 cm^{-1} (3) 0.0616 cm^{-1} अक्रिय इलेक्ट्रोड की उ विलयन का विद्युत अपघ के उत्पाद क्रमश: है– (1) O_2, H_2 (3) H_2, O_2 एक विद्युत अपघट्य के करने पर 2.977 g द्यात के निक्षेपित होती है। द्यात अ	रेल स्थिरांक होगा (2) 0.616 cm^{-1} (4) 616 cm^{-1} इपस्थिति में $\text{Na}_2 \text{SO}_4$ के जल में बने टन किया जाता है तो कैथोड तथा एनोड (2) O_2, SO_2 (4) O_2, Na विलयन में 10800 C विद्युत प्रवाहित जिसका परमाणु भार 106.4 g mol ⁻¹ है। मायन पर आवेश है-
	(1) + 2 (3) + 4	(2) + 3 (4) + 1	 	(1) +2 (3) +4	(2) + 3 (4) + 1

Space for Rough Work

www.princeeduhub.com PRINCE 0			NCE OL	YMP	IAD EXAMINAT	ION	9	PCF	>	
36.	Which of following after electrolysis?	g aqueous so	olutions remains	neutral	36.	निम्न में से कौनसे उदासीन होते है-	जलीय वि	लियन विद्युत	अपघटन	के बाद
	(1) $CuSO_4$	(2) Ag	yNO ₃			(1) $CuSO_4$	(2)) AgNO ₃		
	(3) $K_2 SO_4$	(4) Na	lCl	İ		(3) $K_2 SO_4$	(4)) NaCl		
37.	How many faraday	ys are requi	red to reduce 1	mol of	37.	1 मोल BrO ⁻ को 1	Br⁻मे अप	चयित करने हे	त आवश्य	क फैराडे
	BrO_3^- to Br^- ?					है-			9	
	(1) 3	(2) 5		i		(1) 3	(2)) 5		
	(3) 6	(4) 4		ļ		(3) 6	(4)) 4		
38.	Which of the follow	ving does not	depend on tempe	erature?	38.	निम्न में से कौन ताप	। पर निर्भर	त्नहीं करता है	ह े–	
	i. Molarity	ii. Mol	ality	1		i. मोलरता	ii.	मोललता		
	iii. % w/w	iv. %	w/v	i		iii. % w/w	iv.	% w/v		
	(1) i, ii	(2) ii,ii	Ĺ			(1) i, ii	(2)) ii,iii		
	(3) ii,iii,iv	(4) i,ii,	iii			(3) ii,iii,iv	(4)) i,ii,iii		
39.	The density of 16.4	4% H ₃ PO ₃ s	olution is 1.25	gm/mL.	39.	16.4% H ₃ PO ₃ विल	ायन का घन	त्व 1.25 gm/	mL है। इस	। विलयन
	The normality of so	olution is:		ļ		की नॉर्मलता होगी				
	(1) 2.5 N	(2) 5 1	٧	Í		(1) 2.5 N	(2)) 5 N		
	(3) 1.25 N	(4) 3.8	3 N	ļ		(3) 1.25 N	(4)) 3.8 N		
40.	Given that 10 g of	a dibasic a	eid (molar mass	s = 100)	40.	600 mL विलयन में	द्विक्षारकीय	। अम्ल (मोल	र द्रव्यमान	= 100)
	are present in 600	mL of the s	solution. The de	nsity of		का 10 g उपस्थित	है। विलय	न का घनत्व	1.02 g r	nL ^{−1} है।
	the solution is 1.02	g mL ⁻¹ . Mo	lality of solution	is:		विलयन की मोललत	∏ है।			
	(1) 0.17	(2) 0.3	4			(1) 0.17	(2)) 0.34		
	(3) 0.99	(4) 0.0	16			(3) 0.99	(4)) 0.016		
41.	Low blood oxygen	causes comp	ponents to becom	ne weak	41.	पर्वतारोही के रक्त	में ऑक्सी	जन की कमी	ं उन्हें दुई	ल तथा
	and unable to think	k clearly, sy	mptoms of a co	ondition		सोचने की क्षमता की	ा कमजोर व	रुरती है, यह व	लक्ष्ण किस	। नाम से
	known as.					जाना जाता है –				
	(1) Hypoxia	(2)	Anoxia			(1) हाईपॉक्सिया		(2) एनॉक्सिय	П	
	(3) Excia	(4)	Peroxia	!		(3) एक्सीस्या		(4) परॉक्सिय	Т	
	Q	6								

Space for Rough Work

Space for Rough Work

w	ww.princeeduhub.com	PRINCE OL	.YMP	IAD EXAMINATION	
46.	Which of the following is corre	ectly matched?	46.	निम्नलिखित में कौनस सही सुमेर	लेत है-
	(1) acidic oxides $- Mn_2O_7$, SO	2,TeO3	1	(1) अम्लीय ऑक्साइड – Mn ₂ O	$_7$, SO ₂ , TeO ₃
	(2) Amphoteric oxide - BeO, O	Ga_2O_3 , ZnO		(2) उभयधर्मी ऑक्साइड – BeO	, Ga ₂ O ₃ , ZnO
	(3) Basic oxide $- In_2O_3, K_2O, S$	nO ₂		(3) क्षारीय ऑक्साइड – In ₂ O ₃ ,K	L_2O,SnO_2
	(4) Neutral oxides CO, NO_2 ,	N ₂ O		(4) उदासीन ऑक्साइड – CO, N	NO_2, N_2O
47.	For a reaction, the rate = $k[A]$	2 . [B], when the initial	47.	किसी विशिष्ट अभिक्रिया के लि	ए वेग = k[A]² . [B], है। जब
	concentration of A is tripled k	eeping concentration of		B की सांद्रता को स्थिर रखते हुए	Aकी प्रारोभिक सांद्रता तीन गुणा
	B constant, the initial rate would	ld :	l	करने पर, प्रारंभिक वेग होता है-	
	(1) increase by a factor of six			(1) छह गुणा	
	(2) increase by a factor of nine	e		(2) नौ गुणा	
	(3) increase by a factor of three	ee	1	(3) तीन गुणा	
	(4) decrease by a factor of nin	ie	İ	(4) नौ गुणा कम होगा	
48.	On balancing the given redox	reaction	48.	दी गई अपचयोपचय अभिक्रिया व	को संतुलित करने पर
aC	$r_2O_7^{2-} + bSO_3^{2-} + cH^+ \rightarrow 2aCr$	$^{3+}$ + bSO ₄ ²⁻ + $\frac{c}{2}$ H ₂ O	 aC 	$r_2O_7^{2-} + bSO_3^{2-} + cH^+ \rightarrow 2aO_3^{2-}$	$Cr^{3+} + bSO_4^{2-} + \frac{c}{2}H_2O$
	the coefficients a,b,c are found	l to be respectively		गुणांक a,b,c क्रमश: प्राप्त होते है	_
	(1) 3,8,1 (2) 1,8	3,3		(1) 3,8,1 (2) 1	,8,3
	(3) 8,1,3 (4) 1,3	,8		(3) 8,1,3 (4) 1	,3,8
49.	Which of following statements	are incorrect?	49.	निम्नलिखित में से कौन से कथन	सही नहीं है
	A. All the transition metals exc	ept scandium form MO	i	A. स्कैडियम के अतिरिक्त सभी	संक्रमण धातुएं MO ऑक्साइड
	oxides which are ionic			बनाती है जो आयनिक होते हैं।	
	B. the highest oxidation state co	rresponding to the group		B. समूह संख्या के संगत उच्चतग	न ऑक्सीकरण संख्या संक्रमण
	in transition metal oxides is atta	ained in Sc_2O_3 to Mn_2O_7	r I	धातु आंक्साइडों में Sc ₂ O ₃ से Mi	n ₂ O7 में प्राप्त होती है।
	C. Basic character increase fr	om V_2O_3 to V_2O_4 to	Ì	$\mathbf{C} \cdot \mathbf{V}_2 \mathbf{O}_3$ सं $\mathbf{V}_2 \mathbf{O}_4$ सं $\mathbf{V}_2 \mathbf{O}_5$ का	आर जाने पर क्षारीय गुण बढ़ता
	V_2O_5			ह।	<i>n h</i>
	D. CrO is basic but Cr_2O_3 is a	mphoteric		D. CrO क्षाराय ह जबाक Cr_2O	9 ₃ उभयधमा ह-
	(1) D and D arba (2) D	the option given below:		नाच दिए गए विकल्प म सहा क	ो चयन का।जए - रोन्स D न C
	(1) B and D only (2) B (2) C and D only (4) C			(1) कवल B a D (2) व (2) जेन्द्र C च D (4) व	ham Ba C
	(3) C and D only (4) C	onry		(3) that C a D (4) a	nad C
	\sim				

Space for Rough Work

w	ww.princeeduhu	b.com PRINCE 0	LYMP	IAD EXAMINATIO	N	
50.	Which are of follow	ing metal have the highest tensile	50.	निम्नलिखित में से कौनसी	ा धातु सबसे [;]	ज्यादा तनन सामर्थ्य (तनाव
	strength?			पुष्ठि) रखती है।		
	(1) Platinum	(2) Gold		(1) प्लेटिनम	(2) सोना	
	(3) Chromium	(4) Tungsten	i	(3) क्रोमीयम	(4) टॉगंस्	टन
51.	In aqueous Solution	Eu ⁺² act as -	51.	जलीय विलयन में Eu ⁺²	है –	
	(1) An oxidising ager	nt		(1) एक ऑक्सिकारक		
	(2) Reducing agent			(2) एक अपचायक		
	(3) Can act as redox	agent	İ	(3) ऑक्सिकारक व अप	चायक दोनों	
	(4) None of these			(4) कोई नहीं		
52.	First artificial d-bloc	k element is:	52.	सबसे पहला कृत्रिम d-ख	गंड तत्व हैं-	
	(1) Promethium	(2) Technetium		(1) प्रोमीथियम	(2) टेक्नी	शीयम
	(3) Iron	(4) Zinc	I	(3) लोहा	(4) जींक	
53.	The electrolyte used	in cell used as Hearing aid is ?	53.	श्रवण संबंधी उपकरण में	प्रयुक्त सैल	में कोनसा विघुत अपघट्य
			!	होता है-		
	(1) ZnO	(2) NH_4Cl		(1) ZnO	(2) NH	4Cl
	(3) KOH	(4) H_2SO_4	1	(3) KOH	(4) H ₂ S	O_4
54.	Which colligative p	roperty is used to determine the	54.	प्रोटीन और बहुलकों के म	ोलर द्रव्यमान	न ज्ञात करने के लिए किस
	molar masses of pro	teins and Polymers :		संयुग्मी गुणधर्म को काम	। में लेते है।	
	(1) Relative lowering	g in vapour		(1) वाष्पदाब में सापेक्ष व	कमी	
	(2) Elevation in boiling	ng point		(2) क्वथनांक उन्नयन		
	(3) Depression in fre	ezing point		(3) गलनांक में अवनमन		
	(4) Osmotic pressure	e	i)	(4) परासरण दाब		
55.	Which element has t	he highest melting point?	55.	किस तत्व का गलनांक	सबसे ज्यादा	होता है?
	(1) Molybdenum	(2) Vanadium		(1) मोलिब्डेनम	(2) वैनेखि	डयम
	(3) Platinum	(4) Tungsten	1	(3) प्लेटिनम	(4) टंगस्	टन
56.	Which metal is the n	nost precious?	56.	कौनसी धातु सबसे ज्याद	। कीमती है?	•
	(1) Gold	(2) Platinum	İ	(1) सोना	(2) प्लेटि	प्रनम
	(3) Rhodium	(4) Silver	1	(3) रोडियम	(4) चांदी	
57.	Which one of follow	ing is an ideal solution?	57.	निम्नलिखित में कौनसा अ	आदर्श विलय	न है?
	(1) $\operatorname{CHCl}_3 + \operatorname{CCl}_4$	$(2) CH_{3}OH + C_{2}H_{5}OH$		(1) $\operatorname{CHCl}_3 + \operatorname{CCl}_4$	(2) CH ₃	$_{3}$ OH + C $_{2}$ H $_{5}$ OH
	$(3) C_6 H_6 + CHCl_3$	$(4) C_2 H_5 OH + H_2 O$	Ì	(3) $C_6H_6 + CHCl_3$	(4) C ₂ H	$H_5OH + H_2O$
		•				

Space for Rough Work

Space for Rough Work

	•		
www.	princeed	Uhu	b.com

PRINCE OLYMPIAD EXAMINATION

-

		MA`	THS	S	
61.	Let $f : [2, \infty) \to R$ $f(x) = x^2 - 4x + 5$, then (1) R (3) $[4, \infty)$	the function defined by the range of f is: (2) $[1, \infty)$ (4) $[5, \infty)$	61. 	फलन Let f : [2,∞)- f(x) = x ² - 4x + 5, तब (1) R (3) [4,∞)	R इस प्रकार परिभाषित है कि फलन f का परिसर है (2) [1,∞) (4) [5,∞)
62.	If $A = \{a, b, c, d\}$ then (a,a)}on A is: (1) symmetric only (2) transitive only (3) reflexive only (4) symmetric and transition	a relation R = {(a,b), (b,a), sitive only	62.	यदि A = {a,b,c,d} में है, R = {(a,b), (b,a), (a (1) केवल सममित संबंध (2) केवल संक्रामक (3) केवल स्वतुल्य संबंध (4) सममित व संक्रामक	एक संबंध R समुच्चय A में परिभाषित ,a)}तब R हैं- संबंध
63.	If the set a contains 5 elements, then the numb from A to B is: (1) 720 (3) 0	 (2) 120 (4) none of these (4) none of these 	63.	यदि समुच्चय A में 5 अवर A से B में एकैकी तथा अ (1) 720 (3) 0	गव व समुच्चय B में 6 अवयव हो तो गच्छादक फलनों की संख्या है। (2) 120 (4) इनमें से कोई नहीं
64.	The value of $\cot\left[\cos^{-1}(1) \frac{25}{24}\right]$	$ \left(\frac{7}{25}\right)] is: $ $ (2) \frac{25}{7} $	64.	$\cot\left[\cos^{-1}\left(\frac{7}{25}\right)\right]$ का प (1) $\frac{25}{24}$	मान है (2) <u>25</u> 7
65.	(3) $\frac{24}{25}$ The domain of $f(x) = \sin^{-1} x + \cos x$ is:	(4) $\frac{7}{24}$ the function defined	 65. 	(3) $\frac{24}{25}$ फलन $f(x) = \sin^{-1} x + c$	(4) <u>7</u> osx का प्रान्त है :
66.	 (1) φ (3) [-1,1] Domain of cos⁻¹[x] is function: (1) [-2,1] (3) [-1,2) 	 (2) (-∞,∞) (4) [0,π] where [.] is greatest integer (2) (-1,1) (4) None of these 	 66. 	 (1) ψ (3) [-1,1] cos⁻¹(x) का प्रान्त है यदि (1) [-2,1] (3) [-1,2) 	 (2) (-∞,∞) (4) [0,π] [.] महत्तम पूर्णांक फलन है (2) (-1,1) (4) कोई नहीं
			I		

Space for Rough Work

w	ww.princeeduhub.com PRINCE (LYMP	IAD EXAMINATION	
67.	The value of $\cos^{-1}(2x^2 - 1)$, $0 \le x \le 1$ is equal to	67.	cos ⁻¹ (2x ² -1), का मान है उ	जब 0 <u>< x <</u> 1
	(1) $2\cos^{-1}x$ (2) $2\sin^{-1}x$		(1) $2\cos^{-1}x$ (2)	2) $2\sin^{-1}x$
	(3) $\pi - 2\cos^{-1}x$ (4) $\pi + 2\cos^{-1}x$	İ	(3) $\pi - 2\cos^{-1}x$ (4)	4) $\pi + 2\cos^{-1}x$
68.	If A = $\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$ then A ³ is equal to $\begin{bmatrix} 3\sqrt{3} & 1 \end{bmatrix}$	 	$\overline{a} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}_{\overline{a}}$	तो A ³ =?
	$(1) \begin{bmatrix} \frac{3\sqrt{3}}{2} & \frac{1}{8} \\ -\frac{1}{8} & \frac{3\sqrt{3}}{8} \end{bmatrix} \qquad (2) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ $(3) \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix} \qquad (4) \text{ None of these}$		$(1) \begin{bmatrix} \frac{3\sqrt{3}}{2} & \frac{1}{8} \\ -\frac{1}{8} & \frac{3\sqrt{3}}{8} \end{bmatrix} $ (2) $(3) \begin{bmatrix} 1 & 0 \end{bmatrix} $ (4)	$2) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
69.	$\begin{bmatrix} 0 & -1 \end{bmatrix} (1) \text{ Home of allow}$ Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix}$ then $\begin{bmatrix} 1 & A^{T}B^{T} - (AB)^{T} \end{bmatrix} (2) B^{T}A^{T} - (AB)^{T}$	 69. 	$\begin{bmatrix} 0 & -1 \end{bmatrix} \\ \hline u & = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $(1) A^{T}B^{T} = (AB)^{T} $	$ \begin{array}{c} 4\\5\\ \end{array} \\ \mathbf{R}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} = (\mathbf{A}\mathbf{B})^{\mathrm{T}} \end{array} $
	(1) $A B^{T} = (AB)^{T}$ (2) $B A^{T} = (AB)^{T}$ (3) $(BA)^{T} = B^{T}A^{T}$ (4) None of these		(1) $A B = (AB)$ (2) (3) $(BA)^{T} = B^{T}A^{T}$ (4)	4) कोई नहीं
70.	If $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ then A^{2023} is equal to	 70. 	यदि $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ तब \mathbf{A}^{2023}	³ बराबर है
	$(1) \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad (2) \begin{bmatrix} 0 & 2023 \\ 0 & 0 \end{bmatrix}$	2	$(1) \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \tag{2}$	$2) \begin{bmatrix} 0 & 2023 \\ 0 & 0 \end{bmatrix}$
	$(3) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad (4) \begin{bmatrix} 2023 & 0 \\ 0 & 2023 \end{bmatrix}$		$(3) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \tag{2}$	$\begin{array}{c} 4 \end{pmatrix} \begin{bmatrix} 2023 & 0 \\ 0 & 2023 \end{bmatrix}$
71.	If $A = \begin{bmatrix} 0 & a & 1 \\ -1 & b & 1 \\ -1 & c & 0 \end{bmatrix}$ is a skew symmetric matrix, the	1 1 71.	यदि A = $\begin{bmatrix} 0 & a & 1 \\ -1 & b & 1 \\ -1 & c & 0 \end{bmatrix}$ क	विषम सममित आव्यूह है तब (a
	the value of $(a + b + c)^2$ is:		$(+ b + c)^2$ का मान है :	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1) 1 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	$\begin{array}{c} 2) 0 \\ 0 - \sum \\ \end{array}$
	(3) 4 (4) None of these		(5) 4 (4	+) काइ नहा

Space for Rough Work

PRINCE OLYMPIAD EXAMINATION

PCP

72.	If $f(x) = \begin{vmatrix} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{vmatrix}$ then	 72.	$\frac{1}{2} \frac{1}{2} f(x) = \begin{vmatrix} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{vmatrix} $ तब
	(1) $f(a) = 0$ (2) $f(b) = 0$	l	(1) $f(a) = 0$ (2) $f(b) = 0$
	(3) $f(0) = 0$ (4) $f(1) = 0$		(3) $f(0) = 0$ (4) $f(1) = 0$
73.	If $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$ then find the value of k is $ 2A = k A $	73.	यदि $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$ तो k का मान ज्ञात करो यदि $ 2A = k A $
	(1) 4 (2) -4	 	(1) 4 (2) -4
	(3) 3 (4) 0		(3) 3 (4) 0
74.	The value of the determinant $\begin{vmatrix} \log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9 \end{vmatrix}$ is:	 74.	सारणिक $\begin{vmatrix} \log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9 \end{vmatrix}$ का मान है
	(1) 15 (2) 15/2	 	(1) 15 (2) 15/2
	(3) 10 (4) 0		(3) 10 (4) 0
75.	If $f = \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}$ and $g = (x - y) (y - z) (z - x)$,	 75.	यदि $f = \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}$ तथा $g = (x - y) (y - z) (z - x)$, हो
	then f/g is: $XX = XY$		तो f/g है . yz zx xy
	(1) $x^2 + y^2 + z^2$		(1) $x^2 + y^2 + z^2$
	(2) $xy + yz + zx$		(2) $xy + yz + zx$
	(3) $x^2 + y^2 + z^2 - xy - yz - zx$		(3) $x^2 + y^2 + z^2 - xy - yz - zx$
	(4) None of these	i) i	(4) कोई नहीं
76.	If A is a 3×3 invertible matrix and det $A^{-1} = (det. A)^{K}$	76.	यदि A एक 3×3 का आव्यूह है तथा det $A^{-1} = (det. A)^K$ है
	then K is:	 	तो K = ?:
	(1) $k = 0$ (2) $k = 1$	1	(1) $k = 0$ (2) $k = 1$
	(3) $k = -1$ (4) None of these	İ	(3) k = -1 (4) कोई नहीं
77.	If A is square matrix of order 3 such that A (adj A)	77.	यदि A, 3 $ imes$ 3 क्रम का वर्ग आव्यूह इस प्रकार है कि
	$\begin{bmatrix} -2 & 0 & 0 \end{bmatrix}$	 	$\begin{bmatrix} -2 & 0 & 0 \end{bmatrix}$
	$= \begin{bmatrix} 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ then adj A is equal to	 	A (adj A) = $\begin{bmatrix} 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ तब adj A बराबर है
	(1) -2 (2) -4		(1) -2 (2) -4
	(3) 4 (4) -8	ĺ	(3) 4 (4) -8
	$\overline{\mathbf{v}}$		

Space for Rough Work

www.princeeduhub.com **PRINCE OLYMPIAD EXAMINATION** 🧐 PCP x 2 3 2 यदि x = -4, $\begin{vmatrix} 1 & x & 1 \\ 3 & 2 & x \end{vmatrix} = 0$ का एक मूल है तो, शेष दो मूलों If x = -4 is root of $\begin{vmatrix} 1 & x & 1 \end{vmatrix} = 0$ then the sum of other $\begin{vmatrix} 78 \\ 78 \end{vmatrix}$. 78. 3 2 Х का योग हैtwo roots is: (1) 4(1) 4(2) -3(2) -3(4) 5 (3) 2(3) 2 (4) 5 $\text{The function } f(x) = \begin{cases} x^m \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}, \text{ at } x = 0 \text{ is } \begin{cases} \textbf{79.} & \text{ werr } f(x) = \begin{cases} x^m \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \\ \textbf{79.} & \text{werr } f(x) = \begin{cases} x^m \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \\ \text{werr } f(x) = \begin{cases} x^m \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \\ \textbf{79.} & \text{werr } f(x) = \begin{cases} x^m \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \\ \textbf{79.} & \text{werr } f(x) = \begin{cases} x^m \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \\ \textbf{79.} & \text{werr } f(x) = \begin{cases} x^m \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \\ \textbf{79.} & \text{werr } f(x) = \begin{cases} x^m \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \\ \textbf{79.} & \text{werr } f(x) = \begin{cases} x^m \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \\ \textbf{79.} & \text{werr } f(x) = \begin{cases} x^m \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \\ \textbf{79.} & \text{werr } f(x) = \begin{cases} x^m \sin \frac{1}{x}, & \text{werr } f(x) = \begin{cases} x^m$ 79. continuous function if: (1) $m \ge 0$ (2) m > 0 (4) कोई नहीं (1) m > 0(2) m > 0(3) m < 0(4) None of these (3) m < 0**80.** $\operatorname{ad} f(x) = |x| + |x + 2|, \ \operatorname{da} x$ 80. f(x) = |x| + |x + 2|, then (1) f(x) = 0 पर सतत है परन्तु x = 2 पर असतत् (1) f(x) is continuous at x = 0 but not at x = 2(2) f(x) = 0 तथा x = 2 पर सतत् है। (2) f(x) is continuous at x = 0 and x = 2(3) $f(x) = 2 \quad \text{vt}$ सतत है $\forall x = 0 \quad \text{vt}$ असतत (3) f(x) is continuous at x = 2 but not at x = 0(4) कोई नहीं (4) None of these The set of points where $f(x) = \sec 2x + \csc 2x$ is **81.** बिन्दुओं का समुच्चय जहां $f(x) = \sec 2x + \csc 2x$ असतत है 81. discontinuous (1) { $n\pi : n = 0, \pm 1, \pm 2, \pm 3, \dots$ } (1) { $n\pi : n = 0, \pm 1, +2, +3, \dots$ } (2) $\left\{ \frac{n\pi}{2} : n = 0, \pm 1, \pm 2..... \right\}$ (2) $\left\{ \frac{n\pi}{2} : n = 0, \pm 1, \pm 2..... \right\}$ (3) $\left\{ (2n+1)\frac{\pi}{4} : n = 0, \pm 1, \pm 2.... \right\}$ (3) $\left\{ (2n+1)\frac{\pi}{4} : n = 0, \pm 1, \pm 2..... \right\}$ (4) $\begin{cases} \frac{n\pi}{4} : n = 0, \pm 1, \pm 2... \end{cases}$ 82. \overline{a} $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + ... \infty}}} \frac{dy}{dx} \overline{e^{1}}$ (4) $\left\{ \frac{n\pi}{4} : n = 0, \pm 1, \pm 2.... \right\}$ 82. If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \dots \infty}}} \frac{dy}{dx} \text{ find } \frac{dy}{dx}$ (1) $\frac{\cos x}{2x+1}$ (2) $\frac{\cos x}{2y-1}$ cos x (2) $\frac{\cos x}{2y-1}$ (1) $\overline{2y+1}$ (4) इनमें से कोई नहीं (3) 0 (4) None of these (3) 0

Space for Rough Work

PRINCE OLYMPIAD EXAMINATION

83.	If $x = \sqrt{a^{\sin^{-1}t}}$, $y = \sqrt{a^{1}}$	$a^{\cos^{-1}t}$ a > 0 and -1 < t < 1 then	83.	यदि $\mathbf{x} = \sqrt{\mathbf{a}^{\sin^{-1}t}}, \ \mathbf{y} = \mathbf{v}$	$\sqrt{a^{\cos^{-1}t}}$ $a > 0$ तथा $-1 < t < 1$ तब
	$\frac{\mathrm{d}y}{\mathrm{d}x}$ is:			dy dx होगा:	
	(1) $\frac{y}{x}$	(2) $\frac{x}{y}$		(1) $\frac{y}{x}$	(2) $\frac{x}{y}$
	$(3) \ \frac{-y}{x}$	(4) None of these		$(3) \ \frac{-y}{x}$	(4) कोई नहीं
84.	If $y = x^x$ then $\frac{d^2y}{dx^2} =$		84.	यदि $y = x^x \pi a \frac{d^2 y}{dx^2} =$	
	(1) $x^{x} \left\{ \left(1 + \log x\right)^{2} - \right\}$	$\left\{\frac{1}{x}\right\}$		(1) $x^{x} \left\{ \left(1 + \log x\right)^{2} - \right\}$	$\frac{1}{x}$
	(2) $x^{x} \left\{ \left(1 + \log x\right)^{2} + \right.$	$\left\{\frac{1}{x}\right\}$		(2) $x^{x} \left\{ \left(1 + \log x\right)^{2} + \right.$	$\left\{\frac{1}{x}\right\}$
	(3) 0			(3) 0	
	(4) $x^{x} \left\{ \left(1 - \log x\right)^{2} + \right.$	$\left\{\frac{1}{x}\right\}$		(4) $x^{x} \left\{ \left(1 - \log x\right)^{2} + \right\}$	$\left\{\frac{1}{x}\right\}$
85.	$\sec\left[\sin^{-1}\left(-\sin\frac{50\pi}{9}\right)\right]$	$\left(+\cos^{-1}\left(\cos\left(\frac{-31\pi}{9}\right)\right) \right]$ is	85.	$\operatorname{sec}\left[\sin^{-1}\left(-\sin\frac{50\pi}{9}\right)\right]$	$\left(+\cos^{-1}\left(\cos\left(\frac{-31\pi}{9}\right)\right)\right)$
	equal to :			बराबर है :	
	(1) $\sec\frac{10\pi}{9}$	(2) $\sec \frac{\pi}{9}$		(1) $\sec\frac{10\pi}{9}$	(2) $\sec\frac{\pi}{9}$
	(3) 1	(4) -1	ĺ	(3) 1	(4) –1
86.	$\sec^{-1}\left(\frac{x^2+1}{x^2-1}\right) = ?$	20	86.	$\sec^{-1}\left(\frac{x^2+1}{x^2-1}\right) = ?$	
	(1) $2 \tan^{-1} x$	(2) $2\cot^{-1}x$		(1) $2 \tan^{-1} x$	(2) $2\cot^{-1}x$
	(3) $2x^2$	(4) none		(3) $2x^2$	(4) इनमें से कोई नहीं
	Q				
		~ ^	-		

Space for Rough Work

www.princeeduhub.com PRINCE		PRINCE OL	YMP	IAD EXAMINATION			
87.	If $f(x) = \frac{3x+2}{5x-3}$, then		87.	यदि $f(x) = \frac{3x+2}{5x-3}$, त	ब		
	(1) $f^{-1}(x) = f(x)$ (2) $f^{-1}(x) = f(x)$	$f^{-1}(\mathbf{x}) = -\mathbf{f}(\mathbf{x})$		(1) $f^{-1}(x) = f(x)$	(2) f ⁻¹ ($f(\mathbf{x}) = -\mathbf{f}(\mathbf{x})$	
	(3) fo $f(x) = -x$ (4) f	$f^{-1}(x) = -\frac{1}{19}f(x)$		(3) fo $f(x) = -x$	(4) f ⁻¹ ($f(x) = -\frac{1}{19}f(x)$	
88.	64. Which of the following	function is surjective but	88.	निम्न में से कौनसा फलन	आच्छादक	5 है परन्तु एकैकी नहीं	' है?
	not injective?				2		
	(1) $F: R \rightarrow R; f(x) = x^3 + x$	+1		(1) $F: R \to R; f(x) = 1$	$x^{3} + x +$	1	
	(2) $F: (0, \infty) \to (0, 1] = e^{-x}$	2 1		$(2) F: (0, \infty) \to (0, 1] =$	$= e^{-x}$		
	(3) $\mathbf{F} : \mathbf{R} \to \mathbf{R}; \mathbf{f}(\mathbf{x}) = \mathbf{x}^3 + 2\mathbf{x}$	$x^2 - x + 1$		(3) $F: R \rightarrow R; f(x) = x$	$x^3 + 2x^2 - $	- x + 1	
	(4) $F : R \to R^+$; $f(x) = \sqrt{1 + 1}$	\mathbf{x}^2		$(4) F: R \to R^+; f(x) =$	$\sqrt{1+x^2}$	2	
89.	For the set of linear equation	S	89.	रेखीय समीकरणों के समुच	व्य के वि	लेए λ का मान होगा,	यदि
				अद्वितीय हल न हो।			
	$\lambda x - 3y + z = 0$			$\lambda x - 3y + z = 0$	Y		
	$x + \lambda y + 3z = 1$			$x + \lambda y + 3z = 1$			
	3x + y + 5z = 2			$3\mathbf{x} + \mathbf{y} + 5\mathbf{z} = 2$			
	Value of λ , for which the equa	ation does not have unique					
	solution is:			1			
	(1) $-1, \frac{11}{5}$ (2)	$-1, \frac{-11}{5}$		(1) $-1, \frac{11}{5}$	(2) -	$1, \frac{-11}{5}$	
	(3) $\frac{-11}{5}$,1 (4)	$1, \frac{11}{5}$		(3) $\frac{-11}{5}, 1$	(4) 1,	$\frac{11}{5}$	
90.	If A is a singular matrix, then	A(adj A) is:	90.	यदि Aअव्युत्क्रमणीय आव	यूह है तो	A(adj A) है:	
	(1) Null matrix (2)	Scalar matrix		(1) शून्य आव्यूह	(2) आ	देश आव्यूह	
	(3) Identity matrix (4)	None of these		(3) इकाई आव्यूह	(4) को	ई नहीं	
		5					
	X						

Space for Rough Work

PRINCE OLYMPIAD EXAMINATION

Т

ı

	——————————————————————————————————————							
91.	If TOM is coded as 16, DICK is coded as $\frac{27}{4}$, how would you code HARRY in that code language ?			यदि एक कूट भाषा में TOM लिखा जाता है 16, DICK लि जाता है <u>27</u> , तो उसी कूट भाषा में HARRY को किस प्रव				
	(1) 14 (3) 18	(2) 1) (4) 20		(1) 14	(2) 10			
02	(J) 10 D is brother of P M is	(4) 20	 	(1) 14 (2) 19	(2) 19 (4) 20			
14.	is wife of K How is I	R is faulter of M, T	02	(J) 10 D B का भाई है M B 7	(4)20 का भाई है K M का पिता है T K			
	(1) Son	(2) Daughter		की पनि है B का T से ब	रग गाँर ए K, M रग गाँँ ए I, K रग मंत्रंधा है।			
	(1) Son or Daughter	(2) Daughter (4) None of these	ļ	(1) एन	(?) पत्नी			
93	Rain moved to his No	orth - West side for 2km From		(1) पुत्र (3) पत्र या पत्री	(2) पुत्रा (4) दनमें से कोई नहीं			
	there the turned 90° c	lockwise and moved 2km. From	 03	्र) पुत्र वा पुत्रा गज अपनी उत्तर-पश्चिम	ि दिशा में २ किमी चला। वहाँ मे			
	there 90° clockwise at	ad travelled 2 km then he would		तर्जू अपना उतार परिपर वह 90° दक्षिणावर्त्त घमा	और 2 किमी चला। वहाँ से वह			
	be in which direction f	from the original position $?$	ļ	90° दक्षिणावर्त्त घमा औ	र 2 किमी चला। तब वह अपनी			
	(1) South - East	(2) North - East		अग्रामिशक अवस्था में किम दिला में होगा ?				
	(3) South - West	(4) West	1	(1) दक्षिण - पर्व	(2) उत्तर - पर्व			
	Direction (O. 4) A ser	ies is given, with one term miss-	ĺ	(3) दक्षिण - पश्चिम	(4) पश्चिम			
	ing. Choose the correct	ct alternative the given ones that		निर्देष्ठा (O. 4) में एक अनुब्र	हम दिया है, जिसमें एक पद लप्त है।			
	will complete the serie	es.		सही विकल्प चुनिए जो अनुक्रम को				
94.	5, 10, 13, 26, 29, 58, 6	1, ()		पुरा करे।				
	(1) 122	(2) 125	94.	5, 10, 13, 26, 29, 58, 61	, (?)			
	(3) 128	(4) 64	İ	(1) 122	(2) 125			
	Direction (Q. 5) Ans	wer the following Question on		(3) 128	(4) 64			
	the basis of diagram g	iven below.		निर्देश (Q. 5) आकृति के अ	नाधार पर निम्न प्रश्नों के उत्तर दीजिए।			
95.	Student, Boys, Sportsi	nan	95.	विद्यार्थी, लड़के, खेलकूद वाले				
	\bigcirc	0	ļ	\bigcirc	\frown			
	(1)		 	(1)				
		(4)	 		(4)			
	X		 		\bigcirc			
	Space for Rough Work							

•	
nrincaad	h com
PIIICEEG	

PRINCE OLYMPIAD EXAMINATION

96.	In a row of children. A is	9th from the left and B is fifth	96.	बच्चों की एक पंक्ति में, A	बाएं से नवें स्थान पर है, और B दाएं	
	from right. When A and B interchange their positions A			से पांचवे पर यदि A और B अपने स्थानों की अदला बदली कर		
	will be 18th from the left. What will be B's position			लें, तो Aबाएं से 18 वें स्थान	१ पर हो जाएगा। तदानुसार B दाएं से किस	
	from the right ?			स्थान पर होगा?		
	(1) 14	(2) 9		(1) 14	(2) 9	
	(3) 5	(4) 18	 	(3) 5	(4) 18	
97.	Six persons M, N, O, P,	Q and R are sitting in two rows,	97.	छ: व्यक्ति M, N, O, P, Q तथा R तीन व्यक्ति प्रति पंक्ति के		
	three in each. Q is not t	he end of any row. P is second	l	अनुसार, दो पंक्तियों में बैठे	; है। Q किसी भी पंक्ति के अंत में	
	to the left of R. O is the	e neighbour of Q and is sitting		नहीं है। P , R की बाई ओर	दूसरे स्थान पर है। O, Q का पड़ोसी	
	diagonally opposte to P,	N is the neighbour of R. On the		है और P के विकर्णत: सम्मुख है <u>। N, R</u> का पड़ोसी है। उपर्युक्त		
	basis of above informati	on, who is facing N?	 	सूचना के आधार पर N के सम्मुख कोन है।		
	(1) R	(2) Q		(1) R	(2) Q	
	(3) P	(4) M	İ	(3) P	(4) M	
	Instruction (Que. 8) :- In	n following each questions there	ĺ	निर्देश (पश्न 8) :- निम्नलिखित दिये गये प्रत्येक पश्न में कुछ		
	are some statements.	Below that there are two		कथन दिये गये है। जिनके न	नीचे दो निष्कर्ष I तथा II दिये गये है।	
	conclusion I and II. You	have to understand the given		दिये गये दोनों कथन सर्वज्ञात	त तथ्यों से मेल न रखने वाले हो फिर	
	statement absolutey right	. In the given conclusions which		भी आप उन दोनों कथनों क	गे सत्य समझें।दिये गये निष्कषों में से	
	one is logically true acc	ording to statements :-		कौन - सा निष्कर्ष दिये गये कथनों के आधार पर तर्कसंगत रूप		
				से निकलता है, इसका निण	यि कीजिए।	
	Given answer (1) if only	conclusion I follows		उत्तर (1) दीजिए, यदि केव	ल निष्कर्ष I निकलता है।	
	Given answer (2) if only	conclusion II follows		उत्तर (2) दीजिए, यदि केव	ल निष्कर्ष II निलकता है।	
	Given answer (3) if eith	er conclusion I or II follows	i)	उत्तर (3) दीजिए, यदि या	तो निष्कर्ष I अथवा II निकलता है।	
	Given answer (4) if neit	her conclusion I nor II follows		उत्तर (4) दीजिए, यदि न	तो निष्कर्ष I एवं न ही निष्कर्ष II	
				निकलता है।		
98.	Statements : All picture	es are painting.	98.	कथन : सभी पिक्चर्स पेंटिं	ग्स है।	
	All paintings are photog	raph		सभी पेंटिंग्स फोटोग्राफ है।		
	Some photograph is des	ign.	İ	कुछ फोटोग्राफ डिजाइन है।	I	
	Some design is movies		l	कुछ डिजाइन मूवी है।		
	Conclusions :			निष्कर्षः		
	I. Some paintings are de	esign		I. कुछ पेंटिंग्स डिजाइन है।		
	II. Some photograph are	e movie		II. कुछ फोटोग्राफ मूवी है।		
			l			

Space for Rough Work

PRINCE OLYMPIAD EXAMINATION

Space for Rough Work